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T H E R M O E L A S T I C  I N T E R A C T I O N  OF H O T  S P O T S  W I T H  T H E  N O N A S Y M P T O T I C  

E D G E  OF A P H Y S I C A L L Y  O R T H O T R O P I C  S H E L L  

B. V. Nerubai lo  UDC 539.3 

We study a circular cylindrical shell of a physically orthotropic material which has an arbitrary number 
of periodically located hot spots along some contour. In a semi-infinite shell, hot spots can be located in the 
immediate vicinity of the nonasymptotic edge of the shell, and, in some particular cases, even neighbor it. In 
the adopted formulation, a hot spot can be treated as a foreign inclusion whose coefficient of linear expansion 
differs from that of the main material of the shell at a constant temperature of the shell. The coefficients of 
linear expansion in the longitudinal and circumferential directions are assumed to be different; the product of 
the coefficient of linear expansion and the elastic modulus is constant over the shell. Such studies are of both 
theoretical and practical interest in connection with the problem of the thermal strength of structural elements 
of various high-temperature installations made of high-melting materials (for example, zirconium carbides) 
with the occurrence in them of temperature fields of large degree of localization w hot spots. Precisely in these 
zones, in which the localized stress state due to the occurrence of hot spots or macroinclusions is imposed 
on the overall stress state, microcrack initiation is possible. In brittle materials, this can lead to failure even 
under a single action of hot spots. If the material has sufficient plastic properties, failure occurs under repeated 
actions or thermal cycling. 

Using full equations of the theory of physically orthotropic, elastic, thin shells based on the Kirchhoff- 
Love hypothesis, one can reduce the problem of the action of a temperature field t(a,/3) on a shell to the 
following two differential equations for the resolving functions ~*(a, 8) and (I)**(a, fl) [1]: 
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where (~ and/3 are nondimensional longitudinal and circumferential coordinates, R and h are the radius and 
thickness of the shell, E1 and E5 are the elastic moduli of the shell material in the a and ~ directions, 
respectively, G is the shear modulus, //I is the coefficient of transverse compression in the /3  direction with 
extension in the (~ direction,//5 is the coefficient of transverse compression in the c~ direction with extension 
in the/3 direction, (~lt and (~2t are the coefficients of linear thermal expansion in the (~ and /3 directions, 
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respectively, t*(a, f l ) =  (tl + t2)/2, t*'(a, fl) = ( t 2 -  tl)/2, and t2(a, fl) and Q(oqfl) are the temperatures of 
the inner and outer surfaces of the shell. 

Displacements, forces, bending moments, and other factors are related to the resolving functions 
r and r by differential relations [2]. 

In what follows, we shall study only the action of the temperature field t*(a, 1~) on the shell, bearing 
in mind that the solution for the temperature field t**(a, fl) can be constructed in a similar manner (the 
superscript asterisk is omitted below). 

Numerical solution of the equations of the general theory of cylindrical orthotropic shells involves 
definite difficulties. The high order of the resolving equations (1) and the cumbersome expressions of the 
desired factors in terms of the resolving function practically do not permit one to obtain convenient analytic 
solutions of the boundary-value problems. Moreover, solutions cannot be written in closed form or as explicit 
formulas without series. Therefore, in solving the boundary-value problems, we invoke methods of asymptotic 
synthesis (MAS) of stress-strain states [5, 2]. For this, we write approximate equations of semirnomentless 
theory and simple edge effect, generalized Vlasov-Donnel equations, and equations for the tangential state. 

The equation of semimomentless theory is obtained by simplifying the first of the resolving equations 
(1) using the strong inequality ([02 r >> (102r 

( ) A(la2t +_ UlCqtulu2) Rt(o~,fl). (2) 
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The resolving equation (2), obtained from (1) by means of Novozhilov's criterion [3], is a generalization 
of the Vlasov resolving equation [4] of semimomentless theory and describes here the basic state. 

The resolving equation of simple nonaxisymmetric edge effect 
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is obtained from (1) by using the strong inequalities 
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The resolving equation of shallow shell theory (the Vlasov-Donnel equation) extended to physically 
orthotropic shells is of the form 
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Equation (4) is obtained from (1) by retaining only higher-order derivatives, i.e., eighth-order 
derivatives. 

When the variability of the stress state is very high (the estimate is given below), the last term in Eq. 
(4) can be ignored. Equation (4) then becomes a polyharmonic equation, and the stress-strain state splits 
into two independent states: tangential and bending. The first of them is similar to the plane elastic problem 
and occurs under loading of the centroidal surface of a shell and under the temperature field t*(a, fl), which 
is constant across the thickness. The second is similar to the bending of a plate and occurs under transverse 
loading and the temperature field t**(a, fl). 

When the temperature field is constant across the shell thickness, for the tangential state we obtain 
the resolving equation 

04~, ~--~4 -]- ( A-v22 2t/2) ~176 04qa 
#1 c3a--~-Ofl 2 + A ~ = (a2t + vlaat)Rt(a,  fl). (5) 

We consider semi-infinite shells with a free edge and with a rigidly clamped edge under the action of 
a system of hot spots that occur at the free (rigid) edge of the shell. We place the coordinate origin at the 
center of one heated region (at the center of a hot spot) and represent the temperature field in the form of 
a Fourier series in the circumferential direction and in the form of the Fourier integral in the longitudinal 

793 



direction: 

f t(a,  fl) = toO(a) ~_, O. cos knfl, O(a) = ~. cos aw dw O(a) cos wa da. (6) 
. = 0  0 0 

Here to is an amplitude temperature value, 0(a) is a nondimensional function of temperature distribution 
along the generatrix, 0n is a coefficient of the Fourier series, and k is the number of hot spots in the fixed 
section of the shell a = 0. 

We seek a solution of the resolving equation (1) in the form 

,I,.(,~): 

oo 

v(,~, a)  = ~ v . ( ,~)  Cos k , a .  (7) 
. = 0  

Substituting (6) and (7) into (1), we obtain the following ordinary differential equation for the function 

L ~ . ( a )  = (o~2t + ulalt)c-2RtuO,~O(c~); (8) 
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For the shells considered, the solution must satisfy the boundary conditions at infinity and the following 
boundary conditions at the shell edge for a = -~:  
- -  the free edge 

T~,,(-{) = S . ( -~ )  = 0 

Q~. ( -~ )  = a ~ . ( - ~ )  = 0 

the clamped edge 

(tangential conditions); 

(nontangential conditions); 

(lO) 
(11) 

un(--~) = v , ( -~ )  = 0 (tangential conditions); (12) 

wn(-~)  = w~n(-~) = 0 (nontangential conditions). (13) 

Numerical realization of boundary-value problems for the differential equation (8) with the boundary 
conditions (10)-(13) involves, as noted above, some difficulties. They can be overcome by using the MAS of 
a stress state, formulated in [5] and developed in [2]. MAS allow one to replace the boundary-value problem 
for the differential equation (8) with the boundary conditions (10)-(13) by a set of boundary-value problems 
for differential equations of simpler structure and lower order: (2)-(5). In [5, 2], three MAS were proposed: 

(1) the first uses the condition of minimum of the asymptotic error and equations of semimomentless 
theory and edge effect at "low" harmonic numbers n, and Vlasov-Donnel equations for "medium" and 
"high" n; 

(2) the second uses equations of semimomentless theory and edge effect for "low" n, Vlasov-Donnel 
equations for "medium" n, and equations of the plane elastic problem and plate bending for "high" n; 

(3) the third method uses equations of semimomentless theory and edge effect for "low" and "medium" 
n and equations of the type of the plane problem and plate bending for "high" n. 

The "low," "medium," and "high" harmonic numbers include, respectively n ~< fi, fi + 1 ~< n ~< n*, 
and n ~> n* + 1. For physically orthotropic shells, the formulas for the harmonic numbers n = h and n = n*, 
which determine the limits of application of the approximate equations (2)-(5), have the form 

- - - + 

(14) 
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For the harmonic number n, the first of formulas (14) gives the value fi, rounded to the nearest integer, 
and the second of these formulas gives the value n*. 

To solve the formulated boundary-value problems, we use the second MAS, which leads to solution of 
the equations of semimomentless theory and edge effect (2) and (3) for n ~< h, the equations of shallow shell 
theory (4) for fi + 1 ~< n ~< n*, and the equations of the tangential state (5) for n />  n* + 1. Then, according 
to this MAS, the resolving function can be represented approximately as 

(I)n((~) ~ (I)~((~) + (I)~((~) (n ~< fi), (I)n(~) .-~ (I)~(o~) (fi + 1 ~< n <~ n*), 
>/n* + 1).  (15)  

Here the functions (I)b(a), r (I)~(a), and (I)tn (a) describe the basic state, edge effect, the stress state based 
on shallow shell theory, and the tangential state (superscripts b, e, s, and t, respectively). 

Instead of (8) for the function (I)b(o~), using (2) we obtain the equation 

(d-~4 qt_ 4 b /  4m,]'I, .( ,~) = (,~u + u,o ,a , )~  -~  (1 - uau2)- 'RtoO, ,O(~ , )  
(16) 

(4 t? .  = c2 (1 - _ 1)2,  = 

The solution of this equation is the sum of the solution of the homogenous equation (to = 0) and the particular 
solution found by applying a Fourier transform to (16): 

+oo e_iW a +oo 
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- - O O  - - ( X )  

Here the functions X,(C~) and ~n(a) are given by the formulas X,(a)  = exp(- / t~(~)cos#~a,  ~,(c~) = 
exp(-/tn(~) sin#Ha, and the arbitrary constants cl b and c~ are determined from the boundary conditions 
(10) for the free edge of the shell or from the boundary conditions (12) for the clamped edge of the shell. 

For the resolving function of the edge effect, which is assumed to be radial displacement, we have the 
differential equation 

( 5  -b 4r/4) we(O~) --" --(A- u2vq)(c~2t q-ulalt)c-2Rt~ (18) 

where 0 = (Slt+ V20~21)/(Ot2t -[- VIO~It) and 4q 4 = A(I - UlU2) c -2. 
The solution of Eq. (18) with allowance for the boundary conditions at infinity is written as 

+e~ e_iW ~ +~ 

- - C O  - - O O  

The functions X(~) and r are given by the formulas X(~) = e x p ( - q ~ ) c o s  r/c~ and ~(~) = 
exp(-r/~)sinr/(~, and the arbitrary constants c~ and c~ are found from the boundary conditions (11) or 
(13) fo: the free and rigidly clamped edges, respectively. 

The mismatch in the boundary conditions, which appears as a result of separate imposition of the 
tangential and nontangential boundary conditions, is eliminated by means of a correcting edge effect for 
a = - ~  ((~+ -- c~ + ~ = 0) using the relations 

Ehw~(a +,/3) = 2r/[clx(a +) - c2((a+)], RT~.(a +,/3) = -2rl[c,x(c~ +) - c2((a+)], 

rlGeln ( Ot+ ' t ~) -_ _[Cl((O~+) q- c2X(Ot+)]. (20) 

The arbitrary constants c~ and c2 are found from the nohtangential conditions at the edge a = - ~  of 
the shell. Thus, in the case of the free edge, we obtain 

GIn(-~) = G~n(-~, Cl, c2) + Gbln(--~) = 0, Qln( -~ )  = Q]n(-~, Cl, c2) -k- Qbn(-~ ) = 0. (21) 

For the rigidly clamped edge, the procedure is similar. Note that, in (21), the quantities Gb , ( -~ )  and 
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Qbn(-~) are the ampl i tude values of the longitudinal bending moment  and the shearing force of the basic 
state. 

For the stress state for fi + 1 ~< n ~< n*, the resolving function is r  which is a solution of Eq. (8), 
where L takes the form 

d s d 6 d 4 an A2,~ s d 4 
s ----- ~ -- a6,2 h2 ~ a  6 -Jr a4,4 h4 ~ 4  -- a2,6fi6 ~ 2  q- -4- (1 -- t/lU2) c-2A da  4 . (22) 

The function r should satisfy the conditions at infinity and at the edge a = -~r of the shell: 

r = cl exp ( - r l . ~ )  sin ~1.~ + c2 exp ( - r l . ~ )  cos ~ . ~  

+ c3 exp (--r2na) sin s2na + c4 exp ( - r 2 a a )  cos s2na + ~n(a) .  (23) 

Here r l . ,  s l . ,  r2n, and s2n are the real and imaginary parts of eight complex roots ~ei-4 = 4-rln 4- is1. and 
aes-s = 4-r2n 4- is2n of the following characteristic equation for the differential equat ion (8) with the operator 
(22) instead of the operator (9): 

~e 8 - a6,2fi2ae 6 + [a4,4~. 4 Jr (1 - ulv2)A/c2]~ 4 - a2,6~,%e 2 q- A21~ 8 ---- 0. 

The particular solution ~ ( a )  can be determined by applying a Fourier t ransform to the differential 
equation (8) with the operator  (22): 

foo e_iW a +oo 
,~s(o~ ) _ 1 (oL2t + vlalt) RtoOn dw f O( a)e-i"~ da, 

Q ~  ~ O 0  

L ( w ,  n)  ---- w 8 -t- a6,2fi2to 6 q- a4,4 ~,4t04 + a2,shSw 2 + A2h s + (1 - vlu2)c-2Aw 4. 

The arbitrary constants Cl, c2, c3, and c4 in (23) are found from the boundary conditions (10)-(13) at 
the free or rigidly clamped edge. 

For the resolving function C t ( a )  = ~0n(a), according to (5) and (7), we obtain the ordinary differential 
equation 

pl ~ + = vlalt) RtoO.O(a), 

which, after t ransformation of the  coefficients with allowance for the relation for the shear modulus  G = 
(l[2)(E1E2)l/211 + (vlv2)a/2] -1, takes the form 

( d ~  - ~l/2~22) 2~t (ot) = (ot2t -~- plOtlt) RtOOr~O(ot). (24) 

With allowance for the  conditions at infinity, the solution of Eq. (24) is 

+oo e_iW a +oo 
r = (c~ + ct2Al/4ha)exp(-Ai/4hot) + a2t +27rVlOqt OnRto f (w 2 + Ai/2h2)2 dw f O(~)e iwa dc~. (25) 

The arbitrary constants in (25) are found from the requirement of satisfaction of the tangential 
boundary conditions (10) or (12) depending on whether the free edge or the clamped shell edge is considered. 

Now, the resolving functions for each elementary state are constructed on the basis of the approximate 
equations (17), (19), (23), and (25), and it is not hard to obtain expressions for the desired displacements, 
forces, and bending moments .  To do this, it is necessary to use relations that  connect these factors with the 
resolving functions in semimomentless  theory, in edge-effect theory, and in the cases of a tangential  state 
and a stress state with high variability. Full expressions for the desired factors are obtained by summing the 
above-mentioned solutions: 

~(~, Z) ~ ub(~, Z) + ~(~, Z) + ~,(., Z), . ( . ,  Z) ~ .b(~,  Z) + .~(., Z) + .,(~, Z), 
~(~ ,  Z) ~ ~ob(~, ~) + ~ ( ~ ,  B) + ~ ( ~ ,  Z), 
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T~(~, ~) = T~(~, ~) + T~(~, ~) + T~(~, ~) - T~,(~, ~), 

T2(~, B) = T~(~, ~) + T~(~, ~) + T~(~, ~) - T2,(~, ~), 
a~(~, ~) ~ ~2a~(~, ~) + ~ll(~, ~) + ~ ( ~ ,  B), (26) 

a2(~, ~) ~ C~(~, ~ ) +  ~ 2 ~ ( ~ , ~ ) +  ~(~ ,~ ) ,  

T u ( a , ~ )  = E,h(1 - ~,v2)- ] (a , t  + ~'2a2t)t(a,~), 

T2,(a, Z) = E2h(1 - -  y l l / 2 ) - l ( s 2 f  -]- PlSlt)I~(S, f~). 

The resulting solution gives practically exact results at much less expenditures than with the use of 
the equations of general theory (1). For further simplifications, in (26), we omit terms with the superscript s, 
which refers to the solution based on Eq. (4), and expand the region of application of solutions for the basis 
state and the edge effect to n -- n*, which corresponds to the concept of the third MAS. 

Thus far it has been assumed that,  in the shell with a free or clamped edge a temperature  field occurs 
in the form of arbitrarily shaped hot spots located uniformly along one contour, i.e., it is assumed that  the 
temperature is represented in the form (6). In what follows, we shall study a semi-infinite shell with a free 
edge which is exposed to a piecewise-constant temperature field. This temperature distribution involves great 
computational difficulties, but, simultaneously, it allows one to examine the influence of various parameter  of 
the shell, of the heated region, and of the material on the stress-strain state of the shell using this particular 
example. For the piecewise-constant temperature field, in the solutions written above one should set 8(s) = 1, 
(Is] <~ so), 8(s )  = 0 ( s  > so),  8, = k3o/Tr (n = 0), and 0, = (2/Trn)sinkn~o (n = 1, 2, 3 , . . . ) .  

We assume that  the heated region is rectangular. Solutions for circular, elliptical, etc., regions can 
be obtained in a similar manner. Goodier [6] was apparently the first who considered these issues for the 
plane elastic problem. The solution obtained was used to analyze the influence of various parameters of the 
physically orthotropic material of the shell on the value and character of a stress-strain state. The subject of 
investigation was a shell with a free edge and with the parameter  h / R  = 1/100 in the presence in it of two 
square heated zones (hot spots) 0.25R • 0.25R (a0 = 80 = 0.125) 

We first consider the results for an infinitely long shell (~ -* r The dependence of the longitudinal 
force Tl(0,0) (curves 1) and the longitudinal bending moment  Gl(0,0) (curves 2) on the parameter  ~ for 
various combinations of s i t  and a2t is shown in Fig. 1, where curves A, B, and C correspond to the following 
values o f s u  and s2~: 0.1-10 -6 and 10-10 -6 1/~ 10.10 -6 and 10.10 -6 1/~ and 10.10 -6 and 0.1.10 -6 1/~ 
The elastic moduli E1 and E2 were varied so that the orthotropy parameter ~ varied within the range 0.01-1.0. 

Similar information is given in Fig. 2 for the force T2(0, 0) and the bending moment G2(0, 0) (curves 1 
and 2). The remaining notation is the same as in Fig. 1. Information on the stress state in the heated zone 
is readily illustrated by diagrams "longitudinal stress-circumferential stress," one of which is shown in Fig. 3 
for a u  = s2t = 10 �9 10 -6 1/~ at the center of the heated region. The left branch of the diagram (curve 1) 
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corresponds to orthotropy variants of the material for which E] = 2 �9 104, and E2 incroases from the lower 
point (the coordinate origin) to the upper point so that the orthotropy parameter s varies from 0.01 at the 
lower Fnint to 1 at the upper point, where the left and right branches merge. The right branch of the diagram 
(curve 2) corresponds to orthotropy variants for which E2 = 2.104, and the elastic modulus E1 decreases from 
the upper to the lower point. In this case, values of the orthotropy parameter A vary from 1.0 at the upper 
point to 0.01 at the lower point. Thus, the upper point of the diagram corresponds to an isotropic material. 
At this point, the thermoelastic stresses are maximal. The left and right branches of the diagram envelop a 
family of curves that  correspond to arbitrary values of the coefficients of linear expansion alt  and ~2t and the 
elastic moduli Ez and E2 of the shell material. This means that the diagram gives maximum possible stresses 
at the center of the heated region. These diagrams appear to be of interest in designing materials for various 
high-temperature installations. 

We consider the thermoelastic interaction of hot spots with the free edge of a shell with the parameter 
h / R  = 1/100. Two heated regions 0.25R • 0.25R (s0 =/30 = 0.125) are located at a distance ~R from the 
free edge. The longitudinal force and the circular bending moment calculated using the third MAS are given 
in Figs. 4 and 5, respectively, where curves 1-5 correspond to ~ = 0.126, 0.25, 0.50, 0.75, and c~. Note that 
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curve 1 describes the behavior of the longitudinal force and the bending moment when the hot spots are 
adjacent to the free edge (the "cold" lintel separating the edge and the spot is equal to 0.001R) As the hot 
spots approach the edge, the stress state changes: the bending stresses, which were maximal at the center 
of the heated region, become maximal at the shell edge and change sign. The largest value of the bending 
stress for the heating at the edge is more than twice as high as the largest stress for the case where the spots 
are well off the edge ~ ---* oo. This corresponds to the mechanical-mathematical model of an infinitely thin 
shell. In contrast, the longitudinal force decreases when the heated regions approach the free edge. When the 
spots are adjacent to the edge, it becomes minimal. Note that, according to the boundary condition (10), the 
longitudinal force at the free edge vanishes, and this can be easily verified by curves 1-3 in Fig. 4. In Figs. 4 
and 5, it is assumed that A = 1, vl = v2 = v, and al$ = ~ 2 $  : Of t .  

This work was supported by the International Science Foundation (Grant No. N2J000). 
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